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Recently, four new types of vertex invariants, namely u, v, x, and y, were defined on the 
basis of information on graph distances. They were combined to give four highly selective topo- 
logical indices: U, V, X, and Y. The degeneracy, i.e. equal values for nonisomorphic graphs, 
of the four topological indices is investigated. A structural condition and a graphical method 
which gives pairs of molecular graphs with identical U, V, X, and Y topological indices are 
introduced. The smallest pair of 4-trees representing alkanes having degenerated U, V, X, and 
Y values consists of trees with eighteen vertices. 

1. In t roduc t ion  

In recent years many different graph invariants have been proposed for charac- 
terization of structural features of chemical species. These are usually referred to in 
the chemical literature as topological indices (TIs) [1-6]. Such indices reflect in dif- 
ferent ways the size and shape of the molecules they characterize and also provide 
some measure of the degree of molecular branching. 

By removing all hydrogen atoms from the chemical formula of a chemical com- 
pound containing covalent bonds we obtain the hydrogen-depleted graph (or mole- 
cular graph) of that compound, whose vertices correspond to non-hydrogen 
atoms. In the particular case of hydrocarbons the vertices of the molecular graph 
denote carbon atoms. 

A number of useful graph definitions will be introduced. Let G = (V, E) be a 
graph G with N vertices, q edges, the cyclomatic number # = q - N + 1, the vertex 
set V(G) and the edge set E(G). The cyclomatic number # represents the number 
of cycles in the graph. A tree is a graph without cycles. DEGi denotes the degree of 
the vertex i in G, i.e. the number of edges incident with the vertex i. A k-tree is a 
tree with the maximum degree k. In chemical graph theory alkanes are represented 
as 4-trees. The distance between the vertices i and j is denoted by d/j and is equal 
to the number of bonds on the shortest path between the vertices i andj .  Distances 
d 0. are elements of the distance matrix of G, D = D(G). 
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Let dma, be the maximum topological distance of the vertex i, i.e. the largest ele- 
ment of the ith row of the distance matrix of a molecular graph and let ha be the 
number of vertices in G at distance j from i. The sequence (ha, h i2 , . . . ,  h i j , . . . )  is 
called the distance degree sequence of the vertex i in G, and is denoted DDS(i). 
Note that hil = DEGi. The number of elements in the sequence DDS(i) is equal to 
dnlax  • 

The distance sum of the vertex i is the sum of the topological distances between 
vertex i and every vertex in the molecular graph [7], 

N 

, ,  = ( 1 )  
j = l  

2. Topological  indices 

Although in their origins TIs were developed for the purpose of obtaining corre- 
lations with a great variety of physicochemical properties of chemical substances, 
namely QSPR (quantitative structure-property relationships), their range of appli- 
cations has extended to bibliographical classification of chemical compounds and 
QSAR (quantitative structure-activity relationships). A brief presentation of the 
most important TIs will follow. 

The Wiener index W was introduced in 1947 by Wiener [8], for predicting the 
alkane boiling points. In subsequent studies [9,10], Wiener extended the applica- 
tion of the W index to other physical properties of alkanes such as heats of forma- 
tion, heats of vaporization, molar volumes and molar refractions. The Wiener 
index is equal to the half-sum of the elements of the distance matrix D [11], or to the 
half-sum of the distance sums: 

N N N 

w = ½ F.,  F_d , = F.,si .  (21 
i=1 j = l  i=1 

The relatively high degeneracy of W is due to the loss of information on graph 
distances when they are summed together. The degeneracy of the W index may be 
reduced by using information theory, as shown by Bonchev and Trinaj stid [12], who 
devised ways for increasing the correlation ability while decreasing the degeneracy 
of topological indices. 

The Randid connectivity index was defined as [13] 

X = ~__j(DEGiDEGj) - ' /2 , (3) 
E(o) 

where DEGi and DEGj denote the degrees of the two endpoints of an edge e 8 in 
the molecular graph. The summation is extended over all edges in the molecular 
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graph. The X TI is the one most used as a molecular descriptor in structure-prop- 
erty and structure-activity relationship studies [14]. 

In order to increase the discriminating power of the index X, while preserving 
its correlation abilities, the TI J (average distance sum connectivity) was defined by 
the formula [15-17] 

J (  G) --  ~ ~ (sisj) -112 (4) 
# + 1  e(o) 

where s; and sj denote the distance sums of the endpoints of an edge in the molecu- 
lar graph and the summation goes over all edges in the molecular graph. 

3. Local  graph invariants: information on distances 

A general problem of TIs is that they are more or less degenerate, i.e. two or 
more nonisomorphic structures may lead to the same value for a given TI. The dis- 
criminating ability or structural selectivity of a TI is inversely related to its degener- 
acy. A study on the structural selectivity of six TIs: Wiener's index W, the Zagreb 
group index M1, Randid's connectivity index X, the information on distance index 
/DE and Balaban's index J, reveals that J has the greatest selectivity among the stu- 
died indices [18]. Of course, high selectivity, although highly desirable, is not suffi- 
cient to obtain good results in QSPR and QSAR if the values of TIs do not 
properly reflect structural information in conjunction with the property under 
investigation. 

Using a theorem concerning pairs of graphs with the same distance sum 
sequence, six pairs of molecular graphs representing alkanes with twelve carbon 
atoms were found to have identical index J [17]. That there are no other minimal 
order J-equivalent alkanes was confirmed by calculation of the J index of all 
alkanes with up to twelve carbon atoms. This finding shows that a dumping 
together of distances by such a crude method as summation loses information con- 
tained in the sequence of distances from a given vertex to all other graph vertices. 

Recently new vertex invariants based upon the DDS were proposed [19]. In 
order to replace the crude operation of global distance summation by a more 
refined approach, the DDS vector is converted into new local vertex graph invar- 
iants by means of information theory. On applying Shannon's formula to the infor- 
mation content in DDS vectors we obtain for each vertex i the mean local 
information on the magnitude of distances, 

j=l 

and the local information on the magnitude of distances, 

I)i = Si log 2 Si -- Ui. (6) 
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DDS(i,j) represents the elementj in the distance degree sequence of the vertex i. 
For obtaining more convenient numbers, albeit not derived from rigorous infor- 

mation theory formula, two new related vertex invariants were proposed, called 
the extended local information on distance magnitude, 

xi = si log 2 si - Y i  (7) 

and the mean extended local information on distance magnitude, 

dmax 
Yi = E j D D S ( i , j )  log2 j -  (8) 

j=l 

4. Topological  indices U, V, X and Y 

From local graph invariants one may form TIs either by means of simple opera- 
tions confined to one vertex (e.g., summation of invariant, of its powers, of its 
inverse, etc.) or by more sophisticated operations involving more than one vertex at 
a time. Such operations are involved in computing the Randid connectivity index 
X [13], the Balaban index J [15-17], the identification numbers ID [20], WID [21] 
and SID [5]. 

Summation is likely to lead to high operational degeneracy; therefore by ana- 
logy with the Randid connectivity index with the J index four new TIs were defined 
[19] on the basis of the four local graph invariants ui, vi, xi and Yi, 

U(G) -- q ~  E ( u i u j )  -1/2 (9) 
#+1  E(G) 

V ( G ) -  q ~  E ( v i v j )  -1/2 (10) 
#+1 E(G) 

X ( G ) -  q~ E(XiX j )  -1/2 (11) 
#+1 e(a) 

Y ( G ) -  q~  ~-~(yiYj) -1/2 (12) 
#+1  E(G) 

In all these formulas summations are over all edges in the molecular graph. 
Table 1 presents the indices U, V, X, and Y for the five hexane isomers. 

5. Graphs  with degenerate topological  indices U, V, X and Y 

An interesting fact was observed [19] for the molecular graph of 4-ethyloctane: 
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Table t 
Topological indices U, V, X and Y for alkane isomers with six carbon atoms. 
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Alkane U V X Y 

C 6 11.59807 0.73698 1.08361 1.95797 
2-Me-C5 11.43376 0.88214 1.20076 2.63600 
3-Me-C5 11.29896 0.95477 1.24406 3.13516 
2,2-Me2-C4 11.12333 1.20253 1.40951 5.18377 
2,3-Me2-C4 11.19038 1.08782 1.33988 3.97067 

two nonequivalent vertices present identical distance degree sequence. Using the 
mathematical formulas outlined in eqs. (5)-(8), these nonequivalent vertices with 
the same distance degree sequence will be assigned identical (degenerate) local 
invariants. Nethertheless, on combining local vertex invariants into TIs U, V, X 
and Y, these indices are found to have no degeneracy up to, and including C15H32. 

We will present a theorem concerning the degeneracy of the TIs U, V~ X and Y 
and we will give some examples of graphs with degenerate local graph invariants, 
u, v, x andy,  as well as pairs of graphs with degenerate TIs U, V, X and Y. 

By rg we will denote a local topological invariant of the vertex i defined on the 
basis of the distance degree sequence of the vertex i, 

ri =f [DDS( i ) ] .  (13) 

Also, R will denote a TI defined on the basis of the ri vertex invariant using a simi- 
lar formula to the TI J, 

R(G) - q ~  Z ( r i r j )  -1/2 . (14) 
f ,  + 1 E(G) 

THEOREM 1 

If G and H are connected graphs having the same distance degree sequence and 
e ~ F(e) is a one-to-one function of E(G) onto E(H) such that 

[DDS(a),DDS(b)] = [DDS(c),DDS(d)] 

for each edge e = {a, b} and F(e) = {c, d}, then G and H are R-equivalent. 

Proof 

First, if DDS(G) = DDS(H),  then G and H have the same number of vertices 
n, the same number of edges q, and the same cyclomatic number #. Then, the term 
q~ (# + 1) is the same for G and H. 

Second, if for each edge e = {a,b} from G and F ( e ) =  {e,d} from 
H, [DDS(a), DDS(b)] = [DDS(c), DDS(d)], then 
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(ra, rb) = (rc, rd).  

From the definition of the TI R we have 

= 

E(G) E(H) 

Therefore, G and H are R-equivalent. 

Theorem 1 is equivalent to the one presented in ref. [17] for the index J. In order 
to apply theorem 1, we need a method for obtaining pairs of graphs exhibiting the 
same distance degree sequence. The method was also applied for obtaining J- 
equivalent graphs [17], and was introduced by Slater [22]. 

T H E O R E M 2  

Let A be a graph such that two topologically nonequivalent vertices al and a2 
in A have the same distance degree sequence. Let bl be a vertex in a graph B1 and b2 
be a vertex in a graph B2 such that bl and b2 have the same distance degree sequence 
in B1 and B2 respectively. 

If G is the graph constructed from A, B1 and B2 by identifying vertices al with 
bl and identifying a2 with b2 and H is the graph constructed from A, B1 and/?2 by 
identifying al with b2 and identifying a2 with bl, then G and H have the same dis- 
tance degree sequence. 

bl ~-al a2- b2 ' x~...j -a'~ 

6 H 
The whole set of 4-trees with up to fourteen vertices was searched in order to 

find graphs with topologically nonequivalent vertices exhibiting the same distance 
degree sequence. A brute force approach was used, which consisted in generating 
all 4-trees with up to fourteen vertices, and then calculating the paths for every ver- 
tex in a 4-tree. Finally, a search was done for the detection of topologically nonequi- 
valent vertices exhibiting identical distance degree sequences. The result of this 
search is a set of sixty-two 4-trees with one or more pairs of vertices with the same 
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Fig. 1.4-trees up to fourteen vertices with nonequivalent vertices presenting the same distance degree 
sequence. Indicated nonequivalent vertices have the same distance degree sequence, depicted under 

the corresponding graph. For brevity, the zero distance count is omitted. 
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Fig. 1. Continued. 
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Fig. 1. Continued. 
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22  2 2 1  

2 3  o 3 2  
o 1 2 2  

o 1 2 3  

3 2  
o 1 2 2 1  

Fig. 2. Pairs of 4-trees with vertices having identical distance degree sequence. Indicated vertices for 
each pair have the same distance degree sequence, depicted under the corresponding pair of  4-trees. 

For brevity, the zero distance count is omitted. 

distance degree sequence: two with ten vertices, one with eleven vertices, eight 
with twelve vertices, seven with thirteen vertices, and fortyfour with fourteen ver- 
tices. All these graphs are depicted in fig. 1. Nonequivalent vertices indicated with 
the same symbol have identical distance degree sequence. Below each graph, the 
distance degree sequence of the indicated vertices is presented. 

In order to apply theorems 1 and 2, one needs also to find pairs of vertices in dif- 
ferent graphs, exhibiting identical distance degree sequence. Figure 2 presents 
such pairs of 4-trees. Indicated vertices in a pair of 4-trees have the same distance 
degree sequence. Below each graph, the distance degree sequence of the indicated 
vertices is presented. 

Applying theorems 1 and 2 to the set of graphs in figs. 1 and 2, an enormous num- 
ber of R-equivalent pairs of trees in obtained. We restrict our presentation to the 
six pairs of graphs from fig. 3. 
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C,1 62 

G 3 ~ 

O5 C 6 

G7 G 8 

59 510 

Oll G12 

Fig. 3. Pairs of trees with degenerate U, V, X and Y topological indices. 

As is apparent from table 2, all pairs of trees from fig. 3 exhibit degenerate 
values'for the topological indices U, V, X and Y. 

The G1 and G2 pair of 4-trees with eighteen vertices represents the smallest pair 
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Table 2 
Topological indices U, V, X and Y for the six R-index degenerate pairs of trees from fig. 3. 

4-trees U V X Y 

G1 (72 73.41206 0.87330 1.27427 2.70689 
G3 (74 72.38707 1.22067 1.63273 4.64499 
G5 G6 87.41797 1.04210 1.46177 3.54260 
G7 G8 80.25789 1.05101 1.47389 3.54979 
G9 Gi0 95.79533 0.92956 1.34845 2.93417 
Gll Gx2 87.41797 1.04210 1.46177 3.54260 

of  alkanes with degenerate U, V, X and Y indices. The second pair, 5-trees G3 and 
G4, was originally constructed by Slater [22]. 

6. C o n c l u s i o n s  

Knowing  the structural causes of  the degeneracy of  topological  indices, one can 
design new indices with better  structural selectivity. Due  to the global summat ion  
of  distances, the Wiener  index W is highly degenerate. Using a vertex part i t ioning 
of  distances, the index J presents the smallest degenerate pairs o f  4-trees for graphs 
with twelve vertices. The summat ion  of  distances to give distance sums is the cause 
of  the degeneracy of  the index J.  Using information theory applied to distance 
degree sequences, the highly discriminating topological  indices U, V, X and Y were 
obtained.  The structural  conditions for their degeneracy were demonst ra ted  and a 
pair  o f  4-trees with eighteen vertices, exhibiting degenerate indices was obtained.  
Knowing  the structural causes of  the degeneracy of  the indices U, V, X and Y, is it 
possible to design new, distance-based indices, with a higher structural  selectivity? 
This is an open question, deserving a close consideration and further study. 
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